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Abstract—The field of multi-target tracking faces two primary
challenges: (i) data association and (ii) trajectory estimation.
MTT problems are well researched with many algorithms solving
these two problems separately, however few algorithms attempt to
solve these simultaneously and even fewer utilize optimization. In
this paper we introduce a new mixed integer optimization (MIO)
model which solves the data association and trajectory estimation
problems simultaneously by minimizing an easily interpretable
global objective function. Furthermore, we propose a greedy
heuristic which quickly finds good solutions. We extend both the
heuristic and the MIO model to scenarios with missed detections
and false alarms.

Index Terms—optimization; multi-target tracking; data asso-
ciation; trajectory estimation; mixed integer optimization

I. INTRODUCTION

MULTI-target tracking is the problem of estimation the
state of multiple dynamic objects, referred to as targets

over a fixed window of time. At various points of time within
the window, the targets are observed in a scan, resulting in set
of detections. From these detections, the multi-target tracking
problem aims to extract information about target dynamics.

Solutions to this problem are sought across many civilian
and military applications including but not limited to ballistic
missile and aircraft defense, space applications, the movement
of ships and ground troops, autonomous vehicles and robotics,
and air traffic control. Each application has unique attributes
and assumptions, and various algorithms have been developed
for each. As a result, the field of multi-target tracking has
expanded to numerous research venues, and there is a wide
range of literature on the topic. A more complete overview
of all MTT methods, including the classes of algorithms and
their variants as well as additional methods not discussed in
this paper, can be found in [1]. For a more exhaustive overview
of estimation techniques, filtering, gating, and more please see
[2] or [3].

The field of multi-target tracking faces two primary chal-
lenges: (i) data association and (ii) trajectory estimation. Given
a set of sensor detections the data association problem consists
of assigning the detections to a set of targets. Alternatively,
this can be viewed as a labeling problem in which each
detection needs to be labeled with a target identifier. The
association problem is further complicated when sensors fail
to report detections (missed detection) or incorrectly report
detections (false alarm), resulting in ambiguity in the number
of existing targets. The trajectory estimation problem consists
of estimating the state space of a target (i.e., position, velocity,
acceleration, size, etc.) from the associated detections of the
aforementioned assignment problem. Even when all of the

associations are known, the estimation problem is challenging
due to the presence of measurement noise. As can be seen,
the two problems of data association and trajectory estimation
are closely related and dependent on one another.

Some classical algorithms treat the data association and
trajectory estimation problems separately using a combination
of probabilistic approaches to determine data associations and
filters to estimate trajectories. One such algorithm is the global
nearest neighbor (GNN). The GNN algorithm is a naive 2-D
assignment algorithm, which evaluates one scan of detections
at a time, globally assigning the nearest detection at each
scan [4]. Once the data association has been determined,
the detections are often passed through one of numerous
filters, most commonly a Kalman filter [5], which updates the
trajectory estimates before the algorithm progresses forward to
the next scan. This process repeats sequentially through each
scan of data.

Modern algorithms in the field of multi-target tracking
are most commonly statistical based, often relying on heavy
probabilistic assumptions about the underlying target dynam-
ics or detection process. The two most prevalent statistical
algorithms in the field of multi-target tracking are the the
Multiple Hypothesis Tracker (MHT) and the Joint Probability
Data Association Filter (JPDAF) and their numerous variants
and extensions. Both classes of algorithms attempt to solve
the data association problem by generating a set of potential
hypotheses, or possible detection-to-track assignments. Here a
track is a set of labelled detections belonging to the same
target. Probabilities are assigned to each hypothesis based
on the likelihood of the trajectory’s existence, and numerous
approaches for accomplishing this task have been proposed.

The MHT, first proposed by Reid in [6], assigns likelihood
values to hypotheses using a Bayesian MAP estimator, which
requires assumptions on object dynamics. This algorithm is
generally considered to be the modern standard for solving
the data association problem. Many variants have been pro-
posed for implementation which leverage techniques such as
clustering, gating, hypothesis selection, hypothesis pruning,
and merging of state estimates. Many of these methods are
summarized by Blackman in [7].

While the MHT has seen various forms of success, it faces
several key challenges. Namely, the curse of dimensionality
and complexity. The number of possible hypotheses grows
exponentially with the number of potential tracks and the
number of scans. Consequently, it is considered intractable for
large scenarios. Moreover, the MHT might require extensive
tuning and thus may be difficult to implement in practice, in
addition to being computationally expensive. For these reasons
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it is generally considered to be one of the most complex MTT
algorithms.

A Probability Data Association (PDA) takes a Bayesian
approach to solving the data association problem by finding
detection-to-target assignment probabilities via a posterior
PDF, which again requires heavy assumptions on object dy-
namics and the detection process. In similar fashion, a Joint
PDA (JPDA) assigns probabilities that are computed jointly
across all targets. The JPDAF is an algorithm which imple-
ments the JPDA along with filters and estimation methods as
discussed previously. [2]

A limited number of optimization based algorithms have
been applied to solve the MTT problem, most of which attempt
to solve by mapping the measurement set onto a trellis and
seek the optimal measurement association sequence. Some
examples include the Multi-Target Viterbi[8] and an extension
in [9] which formulates [8] as a network flow, reducing
the solve time from exponential to polynomial. Others have
suggested adaptations which allow this approach to be used
similar to MHT methods by outputting a single best set of K
tracks, or a list of L best sets of k tracks [10].

Compared to the number of statistical based algorithms
in the MTT literature, optimization based algorithms are
relatively lacking. In fact, most occurrences of optimization
in the MTT literature propose the use of optimization to
leverage statistical algorithms, in particular the MHT. For
example, Integer optimization has been used to improve MHT
hypothesis selection by solving an assignment problem which
chooses the best hypothesis, but only after costs have been
assigned (statistically based) and hypotheses have been pruned
[11]. Somewhat similarly, linear optimization has also been
used to assist in the hypothesis selection process for the MHT
[12]. Still, other attempts aim to improve the MHT hypothesis
selection process via Lagrangian relaxation [13].

More recently, Andriyenko and Schindler have proposed
formulating the MTT problem as a minimization of a con-
tinuous energy in [14] and then again as a minimization
of discrete-continuous energy in [15]. These algorithms aim
to more accurately represent the nature of the problem, but
sacrifice interpretability for complexity in the process. Rather
than formulating the problem to lend it easily to traditional
global optimization methods, the authors intend to leverage the
use of optimization techniques to find strong local minima of
their proposed energy objective, and they achieve strong results
in doing so. However, this approach calls for the use of several
parameters that must be tuned and few recommendations
are provided for how to go about such a tuning process.
Additionally, these methods require initialization heuristics to
begin the solving process, which is in itself complicated to
implement and is not directly connected to the optimization
problem solved.

In this paper we propose the use of mixed integer op-
timization (MIO) to formulate and solve the multi-target
tracking problem. Although MIOs are generally thought to be
intractable (NP-Hard), in many practical cases near optimal
solutions and even optimal solutions to these problems can
be obtained in reasonable time [16]. This can be attributed to
the fact that MIO solvers have seen significant performance

improvements in recent years due to advancements in both
methodology and hardware. The development of new heuristic
methods, discoveries in cutting plane theory, and improved
linear optimization methods have all contributed to improve-
ments in performance [17]. Modern solvers such as Gurobi
and CPLEX have been shown to perform extremely well on
benchmark tests. In the past six years alone, Gurobi has seen
performance improvements by a factor of 48.7 [18]. CPLEX
saw improvements by a factor of 29,000 from 1991 to 2007
[19]. From 1994 to 2014, the growth of supercomputing power
as recorded by the TOP500 list has improved by a factor of
567839 [20]. Thus, the total combined effective improvement
of software and hardware advancements is on the scale of 800
billion times in the past 25 years.

The literature is also lacking in performance metrics for the
evaluation of MTT algorithms. There is no standard method of
measuring scenario complexity or algorithm performance as a
function of this complexity. In many cases only the sensor’s
detection noise is taken into account and other factors such
as target density is negated. Recent work [21] proposes a
mathematically rigorous performance metric for measuring the
distance between ground truth and estimated track, but there is
not much attention given to the complexity of generated sce-
narios. In this paper we also suggest measures of complexity
and performance which are related to the ones suggested in
[21] but we show the value in relating a complexity measure to
performance measures, namely that it allows you to evaluate
the data association and trajectory estimation problems sepa-
rately. We evaluate the methods suggested in this paper using
these complexity and performance measures on two simulated
experiments.

The main contributions of this paper are as follows:

(i) We introduce a simple interpretable MIO model which
solves the data association and trajectory estimation
problems simultaneously for a sensor with no detection
ambiguity. The model does not require to tuning of
parameters. This MIO is tractable, in the sense that it can
be solved to optimality or near optimality in a reasonable
amount of time, for the considered applications.

(ii) We propose a heuristic, motivated by the optimization
problem, which gives us feasible solutions to this prob-
lem and show how it can be used as warm start to the
MIO in order to improve the quality of the solutions
obtained as well as the running time.

(iii) We extend this basic MIO model and corresponding
heuristic initialization algorithm for the case of detection
ambiguity, i.e., the case where there are both missed de-
tections and false alarms, keeping interpretability while
only adding two tunable parameters, as well as provide
general guidelines as to how tune this parameters.

(iv) We present a new measure of complexity for the data
association problem, and show how it aids in scenario
generation. We also discuss a simplified measure of
performance for the trajectory estimation problem.

The paper structure is as follows. We begin with a de-
scription of the MTT problem as we wish to model it in
Section II. In Section III we develop a simple MIO formulation
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for a sensor with no detection ambiguity and extend it to
a generalized formulation. Following is a discussion on a
proposed heuristic in Section IV. Then we propose extensions
for both the MIO formulation and the heuristic to a sensor
with detection ambiguity in Section V. Metrics for measuring
scenario complexity and algorithm performance are proposed
in Section VI. Experimental simulations are outlined in Sec-
tion VII. A summary of significant computational results are
discussed in Section VIII. Finally, conclusions and future work
are discussed in Section IX.

General Notations: Unless specified otherwise, ‖·‖ is used
to indicate the L1 norm, and |·| refers to element wise absolute
value.

II. PROBLEM DESCRIPTION

In this paper, we restrict our exploration of the MTT
problem to the automatic tracking of multiple, independent
point targets using a single sensor. A target is the object of
interest. A point target’s only identifiable attributes are its state
space, which we restrict to position and velocity. The state
space fully defines the field of trajectories, or paths along
which targets travel. A detection is collected from each target
at sequential scans. Detections are subject to noise. We treat
two general scenarios: with and without detection ambiguity.

When there is no detection ambiguity, the sensor produces
exactly one detection for each target at each time, and there
is no other source of detections. Therefore, the number of
detections at each point in time is the same as the number
of targets, and the data association problem at each point in
time is equivalent to a simple assignment problem. Our basic
optimization model, presented in section [add reference] will
this with this problem.

Detection ambiguity refers to the more complex case where
the sensor generates both false alarms and missed detections.
A False Alarm occurs when a detection is collected when no
target exists. This could be the result of measurement error
or difficulties in signal processing. A Missed Detection occurs
when a data point is not collected at a given time when a
target actually exists. Therefore, the number of detections at
each point in time may be either higher or lower than the
actual number of targets, and each detection can be classified
in either of these categories in addition to assigning targets
to trajectories as before. In section [add reference] we will
extend the formulation of basic model to a robust formulation
dealing with this ambiguity, and refer to it as the robust MIO
model.

Throughout the paper we make the following assumptions:

Assumption 1. (i) All targets have constant velocity. i.e.,
Targets do not maneuver and no outside forces act on
them.

(ii) Each target’s dynamics are independent of one another.
(iii) The number of targets remains constant throughout the

window of observation, i.e., there is no birth/death of
targets.

(iv) Each target produces at most one detection per scan.
(v) The detection errors are independent of one another.

Notation: We observe P targets over a fixed time window
over which T scans are collected. Scans occur at a fixed rate,
usually of about 1Hz, such that the set of scans is denoted by
{t1, t2, ..., T}. The ith detection of the tth scan is indicated by
xit, such that a scan of data at time t is the unordered set of
detections Xt = {x1t, x2,t, ..., xP,t}. The data for the problem
is the ordered set of scans X = {X1,X2, ...,XT }. The state
space of target trajectories is paramatarized by a true initial
position αtruej and a true constant velocity βtruej . Therefore,
the true position x̄jt of trajectory j at scan t is given by:

x̄jt = αtruej + βtruej t (1)

III. BASIC MIO MODEL

In this section, we deal with the case of no detection
ambiguity. Therefore, we add the following, more restrictive
assumptions, to those presented in Assumption 1

Assumption 2. (i) The sensor generates exactly one detec-
tion for each target at each time (no missed detections).

(ii) The sensor does not generate any additional detections
(no false alarms).

We begin constructing our MIO model by defining decision
variables that represent the desired detection to target asso-
ciations and target estimated trajectories. Next, using these
decision variables, we develop an objective function which
mathematically quantifies the value of the model decisions, in
this case as a measure of distance of the estimated trajectories
from the associated detections. Finally, we restrict these vari-
ables using constraints that force the model to find solutions
that are feasible for the MTT problem. The model is developed
step by step in the coming sections before the full model is
presented.

A. Decision Variables

The data association and trajectory estimation problems
require unique decision variables. Because these two problems
lie in different domains, the variables we use to represent
these decisions also differ. First, we introduce continuous
decision variables αj ∈ Rn and βj ∈ Rn to represent the
estimated initial position and velocity of each trajectory j. In
our interpretation of the MTT problem we allow the trajectory
parameters to lie anywhere in the real-continuous domain. For
the data estimation problem, we wish to assign detections
to trajectories, a naturally discrete problem. Therefore, we
introduce binary decision variables yitj to indicate whether
detection xit is assigned to trajectory j or not:

yitj =

{
1, if detection xit is assigned to trajectory j,
0, otherwise.

(2)

B. Objective Function

Next, we would like to develop a function which accurately
scores the quality of a feasible solution. An ideal objective
function would jointly provide a single quantifiable measure
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of goodness for both the data association and trajectory
estimation problems. Therefore we want the objective to take
into account the assignments of detections in addition to the
estimated trajectory determined by those assignments.

In terms of our established decision variables, the estimated
position of the linear trajectory j at time t is given by:

x̂jt = αj + βjt (3)

For the trajectory estimation problem we wish to minimize
the distance between xit and x̂jt. In other words, for detections
xit assigned to trajectory j, we wish to minimize ‖xit − x̂jt‖
for some norm. The two natural norms to consider here are the
L1 and L2 norms. The L1 norm has the advantage that it can be
reformulated using linear optimization (through the addition of
continuous variables and constraints), and it is well known to
be more robust to outliers. Additionally, existing algorithms for
MIO are more well developed for linear rather than quadratic
optimization. However, the L2 norm square form (RSS) has
the advantage that it can be quickly computed using a matrix
formulation, making it more predisposed to a heuristic. This
concept will be discussed further in section IV.

Substituting (3) for x̂jt we arrive at our objective function:

minimize:
αj ,βj

∑
(i,j)∈A

T∑
t=1

‖xit − αj − βjt‖ (4)

where A is the set of pairs that indicate the assignment of
detection i to trajectory j.

For the data association problem, we wish to only penalize
the objective function when detection xit has been assigned
to trajectory j, which occurs when yitj = 1. An easy method
to enforce this using our established variables would be to
construct an interaction term like in (5) below.

minimize:
yitj ,αj ,βj

P∑
i=1

T∑
t=1

|yitjxit − αj − βjt‖ (5)

We now show that this objective can be converted to a linear
program in the case of the L1 norm by introducing continuous
variables θjt and the following additional constraints.

yitjxit − αj − βjt ≤ θjt ∀i, j, t (6)
−(yitjxit − αj − βjt) ≥ θjt ∀i, j, t (7)

The resulting objective function for the case of the L1 norm
would then be:

minimize:
θjt

P∑
j=1

T∑
t=1

θjt (8)

where e is the vector of ones.
For the case of the L2 norm, the objective function would

be:

minimize:
θjt

P∑
j=1

T∑
t=1

‖θjt‖22 (9)

C. Constraints

For each scan, each detection xit must be assigned to
exactly one target j:

P∑
j=1

yitj = 1 ∀i, t (10)

Similarly, for each scan, each target must be assigned
exactly one detection:

P∑
i=1

yitj = 1 ∀j, t (11)

D. Simple Formulation

Combining all of these elements together, we arrive at the
following MIO model:

minimize:
θjt

P∑
j=1

T∑
t=1

θjt

subject to:
P∑
j=1

yitj = 1 ∀i, t

P∑
i=1

yitj = 1 ∀j, t

yitjxit − αj − βjt ≤ θjt ∀i, j, t
− (yitjxit − αj − βjt) ≥ θjt ∀i, j, t
yitj ∈ {0, 1} ∀i, t, j
αj ∈ Rn ∀j, βj ∈ Rn ∀j, zjt ∈ Rn ∀j, t

E. Generalized Formulation

The previous formulation, although simple and easily inter-
pretable, has the disadvantages of being (i) dense and (iI) ill
suited for extension to detection ambiguity. Therefore, next,
we present a generalized formulation which can be linearized
through the introduction of additional binary decision vari-
ables. Alternatively, we can create a new variable zjt which
takes on the value xit when yijt = 1 and some arbitrary
number when yitj = 0. Using this method we must adjust
the objective function below.

minimize:
zjt,αj ,βj

P∑
j=1

T∑
t=1

‖zjt − αj − βjt‖ (12)

This objective can then be linearized by again introducing
θjt and similar constraints as follows.

minimize:
θjt

P∑
j=1

T∑
t=1

θjt (13)

zjt − αj − βjt ≤ θjt ∀i, j, t (14)
−(zjt − αj − βjt) ≥ θjt ∀i, j, t (15)

Furthermore, we must ensure that the decision variable zjt
will only take on the value of xit in the objective function if
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xit is assigned to target j (yitj = 1). We enforce this effect
using the following constraint:

Mt(1− yitj) ≥ |zjt − xityitj | ∀i, t, j (16)
(17)

where Mt = max
j
|xit| for each scan. Furthermore, we can

write this equivalently as a linear optimization problem by
using the following set of two linear constraints:

xityitj +Mt(1− yitj) ≥ zjt ∀i, t, j (18)
xityitj −Mt(1− yitj) ≤ zjt ∀i, t, j (19)

Combining all of these elements together, we arrive at the
following generalized MIO model:

minimize:
θjt

P∑
j=1

T∑
t=1

θjt

subject to:
P∑
j=1

yitj = 1 ∀i, t

P∑
i=1

yitj = 1 ∀j, t

xityitj +Mt(1− yitj) ≥ zjt ∀i, t, j
xityitj −Mt(1− yitj) ≤ zjt ∀i, t, j
zjt − αj − βjt ≤ θjt ∀i, j, t
− (zjt − αj − βjt) ≥ θjt ∀i, j, t
yitj ∈ {0, 1} ∀i, t, j
αj ∈ Rn ∀j, βj ∈ Rn ∀j, zjt ∈ Rn ∀j, t

IV. HEURISTIC

Next, we present a detailed description of a heuristic which
finds good feasible solutions. These solutions can be used as a
warm start to the MIO, providing a performance boost to the
MIO. The heuristic leverages the power of randomization local
search methods to find locally optimal solutions. Although
the heuristic takes a local search approach, we hypothesize
that it will discover near optimal solutions, provide that it is
initialized with enough random starting points.

An important distinction to discuss here is the difference
in objective functions. As discussed before the two natural
choices are the L1 and L2 norms. For the heuristic, we desire
an objective which can be calculated efficiently. Therefore,
in this case the L2 norm square (RSS) is the preferred choice
because it can be calculated quickly using matrix algebra. [22]
shows how a design matrix M can be using to quickly compute
the RSS.

The algorithm initializes by randomizing a solution which
satisfies equations 6 and 7. The initial parameters αj and βj
are calculated as well as the objective score, RSS0. In swap
k for scan t choose i, l ∈ {1, . . . , P} detections and j,m ∈
{1, . . . , P} targets such that ykitj = 1 and ykltm = 1. Switch
the detection association so that yk+1

ltj = 1 and yk+1
itm = 1.

Compute αj , βj , αm, βm, and RSSk. If the objective score
improves, the swap is kept, otherwise it is rejected. The
algorithm then advances to the next scan where the same
process is repeated, and it terminates once it makes a single
pass through all scans without accepting a single switch. As we
will see in the computational results section, Algorithm 1 runs
very efficiently, providing high quality global solutions very
quickly. Furthermore, this algorithm can be parallelized by
running partitions of the N starting points on separate cores,
leading to even greater performance advantages. A proposed
pseudocode for the heuristic is provided below in Algorithm 1.

Algorithm 1 Randomized local search with heuristic swaps

Input: X , P, T, M
Output: RSS

Initialization : Assign random initial assignments for y0itj
1: Calculate αj , βj ∀j
2: Calculate RSS0

3: swapped ← true
4: k ← 1
5: while swapped do
6: swapped ← false
7: for t in {t1, t2, ..., T} do
8: Randomly choose j,m ∈ {1, . . . , P}
9: Find i, l such that yk−1itm ← 1 and yk−1ltj ← 1

10: Swap such that ykitj ← 1 and ykltm ← 1
11: Calculate RSSk, αj , βj , αm, βm
12: if (RSSk ≥ RSSk−1) then
13: yk ← yk−1

14: else
15: swapped ← true
16: end if
17: end for
18: k ← k + 1
19: end while
20: return RSSk, ykitj

V. ROBUST MIO MODEL

In this section we treat the case of detection ambiguity. The
key difference is that now the number of targets is unknown,
and this becomes a third problem which we wish to solve
in addition to the data association and trajectory estimation
problems which remain once the number of targets has been
determined. Since in this case both missed detections and false
alarms are present the number of targets is unknown and we
may no longer have the same number of detections at each
scan. Therefore, we must introduce additional notation for
this scenario. We let nt represent the number of detections
at time t. We can then identify the fewest and largest number
of detections in a scan with N0 = min

t
nt and N1 = max

t
nt,

respectively.
Specifically, in this case we replace Assumption 2 by the

following less restrictive assumptions.

Assumption 3. (i) The sensor does not generate a detection
for any target for any time with probability Pd which is
constant and independent between targets and scans.
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(ii) At each point in time the sensor generates false alarms
according to a Poisson distribution with rate λFA, which
are located uniformally in the space.

(iii) The number of true targets P satisfies N0 ≤ P ≤ N1.

We first show that this problem can be solved by dividing
it into a subset of simpler problems. We present a MIO
formulation that assumes a fixed number of targets. This
formulation allows us to leverage the power of parallelization
to solve the problem by solving each subproblem separately.
The results can then be gathered and compared to find the
globally optimal solution. For completeness we also present
a formulation which solves the original problem without the
need for multiple parallelized MIOs.

A. Fixed Number of Targets (P)

If we first assume that the number of targets is fixed, we
can more easily adapt the generalized formulation presented in
Section III to handle the addition of false alarms and missed
detections. This simple adaptation requires the introduction of
two additional variable types and minimal constraint changes.
We can then run these formulations for each possible value
of fixed number of targets P across the range of N0 to
N1 and choose the solution with the best objective overall.
Furthermore, this is an advantageous strategy because each
independent experiment can be run in parallel.

1) Decision Variables: We first introduce new binary deci-
sion variables Fit to indicate whether or not a detection xit is
a false alarm.

Fit =

{
1, if detection i at time t is a False Alarm,
0, otherwise.

Similarly, we introduce binary decision variables Mjt to
indicate whether or not an existing trajectory j has a missed
detection at time t.

Mjt =


1, if detection for trajectory j

at time t is a Missed Detection,
0, otherwise.

2) Constraints: All detections must either be assigned to a
trajectory j or a false alarm.

P∑
j=1

yitj + Fit = 1 ∀i, t (20)

All trajectories j must either be assigned a detection or a
missed detection.

nt∑
i=1

yitj +Mjt = 1 ∀j, t (21)

The sum of all false alarms is TF, and similarly the sum of
all missed detections is TM.

nt∑
i=1

T∑
t=1

Fit = TF (22)

P∑
j=1

T∑
t=1

Mjt = TM (23)

3) Objective Function: We can easily extend (12) to ac-
count for false alarms and missed detections by introducing
penaties ψ0 (φ0, respectively) for each missed detection (false
alarm, respectively). Such an objective form would take the
form of:

minimize:
zjt,αj ,βj ,TF,TM

P∑
j=1

T∑
t=1

θjt + ψoTF + φ0TM (24)

which can be linearized in the same manner as (13).
4) Formulation 2:

minimize:
ψjt

P∑
j=1

T∑
t=1

ψjt + θoTF + φ0TM

subject to:
P∑
j=1

yitj + Fit = 1 ∀i, t

nt∑
i=1

yitj +Mjt = 1 ∀j, t

nt∑
i=1

T∑
t=1

Fit = TF

P∑
j=1

T∑
t=1

Mjt = TM

xityitj +Mt(1− yitj) ≥ zjt ∀i, t, j
xityitj −Mt(1− yitj) ≤ zjt ∀i, t, j
zjt − αj − βjt ≤ ψjt ∀j, t
− (zjt − αj − βjt) ≤ ψjt ∀j, t
yitj ∈ {0, 1} ∀i, t, j
αj ∈ Rn, βj ∈ Rn ∀j
zjt ∈ Rn, ∀j, t

B. Number of Targets as a Decision Variable

In the previous section, we assumed we knew the number
of targets. In this section, the number of targets is determined
via optimization.

1) Decision Variables: Toward this goal, we introduce a
new binary decision variable wj to indicate whether or not
trajectory j corresponds to an existing target.

wj =

{
1, if trajectory j exists,
0, otherwise.

2) Constraints: Most constraints remain similar to their
original counterparts, except now we must account for the
possibility that some trajectories may not exist. Therefore,
where before we summed over P, we will now be summing
over N1. This affects two constraints.

All detections must either be assigned to a trajectory j or
a false alarm. This can be implemented similarly to (20),
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except now we sum over N1 because the number of targets is
unknown but limited by N1.

N1∑
j=1

yitj + Fit = 1 ∀i, t (25)

Similarly, (23) must be adjusted to sum over the maximal
number of targets allowed N1 .

N1∑
j=1

T∑
t=1

Mjt = TM (26)

All existing trajectories must either be assigned a detection
or a missed detection.

nt∑
i=1

yitj +Mjt = wj ∀j, t (27)

We restrict αj and βj to be zero if trajectory j does not
exist. This ensures only existing trajectories are penalized in
the objective function.

|αj |+ |βj | ≤M0wj ∀j (28)

Since N0 ≤ P ≤ N1, we can set wj = 1 for all
j = 1, . . . , N0, which leaves us with only N1−N0 additional
binary variables. We simply need the additional constraint

wN0+1 ≥ ... ≥ wN1 (29)

which guarantees a unique w solution. Furthermore, we can
replace (27) with the following two constraints:

nt∑
i=1

yitj +Mjt = 1 ∀j = 1, ..., N0, t (30)

nt∑
i=1

yitj +Mjt = wj ∀j = N0, ..., N1, t (31)

3) Formulation 3: Incorporating these additional variables
and constraints, we arrive at the following complete alternative
formulation.

minimize:
yitj ,αj ,βj ,Fit,Mjt

N1∑
j=1

T∑
t=1

|zjt − αj − βjt|+ θoTF + φ0TM

subject to:
N1∑
j=1

yitj + Fit = 1 ∀i, t

nt∑
i=1

yitj +Mjt = 1 ∀j = 1, ..., N0, t

nt∑
i=1

yitj +Mjt = wj ∀j = N0, ..., N1, t

nt∑
i=1

T∑
t=1

Fit = TF

N1∑
j=1

T∑
t=1

Mjt = TM

wN0+1 ≥ ... ≥ wN1

|αj |+ |βj | ≤M0wj ∀j
xityitj +M1(1− yitj) ≥ zjt ∀i, t, j
xityitj −M1(1− yitj) ≤ zjt ∀i, t, j
yitj ∈ {0, 1} ∀i, t, j
αj ∈ Rn, βj ∈ Rn, wj ∈ Rn ∀j
zjt ∈ Rn, ∀j, t

C. Robust Extension to Algorithm 1
The heuristic for the scenario with ambiguity follows simi-

larly from the heuristic developed under the scenario without
ambiguity. The main difference is that now the options for
making switches must include false alarms and missed detec-
tions. Therefore, the framework of the new algorithm is the
same as for Algorithm 1, but the new variant of the heuristic
randomly chooses from the following options:

1) Switch detection assignments between two existing tar-
gets.

2) Switch the detection assignment of an existing target with
a false alarm.

3) Switch the detection assignment of an existing target with
a missed detection for a different existing target.

4) Move the detection assignment of an existing target to a
false alarm and replace it with a missed detection.

5) Move a false alarm into the location of a missed detection
for an existing target.

We refer to this robust extension to Algorithm 1 as Algo-
rithm 2. Similar to Algorithm 1, this robust extension will
accept the switch/move if the objective score improves, and
reject the switch/move otherwise. Algorithm 2 terminates un-
der the same conditions as Algorithm 1. We expect Algorithm
2 to run slightly slower due to the increase in potential
combinations of solutions.

VI. SCENARIO COMPLEXITY & PERFORMANCE METRICS

There does not exist a unified approach for measuring
scenario complexity as stated by [1] nor does there exist clear
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measures of performance for each of the trajectory estimation
and data association problems. In this paper, we argue that the
data association problem has a natural performance metric but
lacks a measure of complexity, while the trajectory estimation
problem has a natural measure of complexity but lacks a clear
performance metric.

In the case of the data association problem, the preferred
performance metric often used in practice is % accuracy i.e.,
the number of correct detection assignments out of the number
of possible correct assignments. For the case without sensor
ambiguity, the number of possible assignments is simply the
total number of detections, or equivalently, the number of
targets multiplied by the number of scans.

Accuracy =
# correct assignments
Total # of detections

=
# correct assignments

PT
(32)

In the case of sensor ambiguity, however, the number of
possible correct assignments requires a deeper explanation. To
develop a better understanding, we consider our goal, which is
to correctly assign detections to targets and identify both false
alarms and missed detections. With this in mind, we define
the number of possible correct assignments as the number of
targets multiplied by the number of scans plus the number of
false alarms

Accuracy =
# correct assignments
PT + # False Alarms

. (33)

Whereas accuracy serves as a good measure of performance
for data association, there does not exist a corresponding
measure of complexity which comparatively measures the
difficulty of the data association problem. We argue that
σ alone is not the best measure of difficulty for the data
association problem. For example, a scenario with very close
target trajectories may not actually be difficult to ascertain data
associations even for small σ values, and similarly with high
enough σ values even widely spaced targets could be difficult
to differentiate. Therefore, we introduce a metric ρ to quantify
this complexity. For ease of notation in developing this metric
we first define Dijt as the distance between one true trajectory
i and another true trajectory j.

Dijt = ‖αtruei + βtruei t− αtruej + βtruej t‖ (34)

Additionally, we define a variable cijt that will take the
value of 1 if the distance between trajectory i and trajectory
j is greater than some constant. We propose the use of 2σ,
since it is hard to distinguish detections which lie between
target trajectories closer that.

cijt =

{
1, if Dijt > 2σ,
0, otherwise.

Then the difficulty of a scenario in the sphere of the data
association problem is quantified by the complexity measure

ρ, which is the proportion of detection pairs that fall within a
closely defined proximity to each other.

ρ =

T∑
t=1

∑
i<j

cijt(
P
2

)
T

(35)

This metric has several desirable attributes. First and fore-
most, it falls within the range of [0, 1], identical to the range
of accuracy, making it easily comparable. Secondly, it is easy
to understand and interpret. Higher values of ρ indicate easier
scenarios because fewer targets are within close proximity for
a shorter amount of time, and vice versa. Finally, as we have
defined it, ρ has an inverse relationship with σ, which means
that it serves as a connection between scenario generation
and performance measuring processes. While σ can be used
more naturally for scenario generation, where it is useful as a
parameter for signal noise, ρ can be calculated after the fact
and used to quantify the difficulty of the scenario as it pertains
to the data association problem.

In the case of the trajectory estimation problem, the pre-
ferred complexity metric often used in practice is σ. Increasing
the signal noise may often lead to stronger bias in the trajectory
estimation, especially in scenarios with fewer scans, and
results in a deteriorated quality of the estimation. Therefore,
we believe that σ is the correct metric for use in measuring
the difficulty of the trajectory estimation problem.

However, establishing a performance metric for the trajec-
tory estimation problem is necessary. We choose to implement
a metric which captures the core goal of the trajectory esti-
mation problem, that is to estimate a trajectory as close as
possible to the true ground track.

δ =

T∑
t=1

P∑
j=1

‖x̄jt − x̂jt‖

PT
(36)

We match the true trajectories to the estimated trajectories
using a one-to-one assignment problem which can be formu-
lated using linear optimization. Lower values of δ correspond
to higher performance because the distance between the esti-
mated and true ground trajectories is smaller.

In Section , we will see how these measures of complexity
and performance are useful in quantifying the strengths and
weaknesses of our methods.

VII. EXPERIMENTAL SIMULATIONS

There does not exist among the literature a clearly defined
comprehensive set of simulation scenarios as pointed out
by [1]. However, this work also noted that two types of
scenarios of particular importance include crossing trajectories
and parallel trajectories. In agreement, we choose to develop
scenarios of both types. We evaluated our methods on two
separate experiments, one with detection ambiguity and one
without.

Both experiments were implemented in the development
software julia 0.4.3 [23] using the optimization package JuMP
[24]. The implemented MIO utilized the optimization solver
Gurobi 6.5.0[25]. Gurobi was limited to the use of a single



9

core for the optimization processes. Each simulation was run
on a single node of the unclassified TX-Green cluster located
at Lincoln Laboratories [26]. The cluster utilizes DL165 G7
compute nodes, consisting of 2.2 GHz compute nodes, with
8 GB of RAM each, for a total peak performance of 77.1
TFLOPS.

A. Experiment 1

In order to evaluate scalability we test our methods across
a range of scenarios with varying numbers of targets and
scans. In particular we consider: P ∈ {4, 6, 8, 10} and
T ∈ {4, 6, 8, 10} seconds. Scans are collected at a rate of
1 Hz. The cartesian product of P and T creates 16 unique
scenario sizes. We generate 10 unique crossing scenarios and
10 unique parallel scenarios of each size. Crossing scenarios
have trajectories that intersect through time, while parallel sce-
narios have trajectories within close proximity to one another
but do not ever actually intersect. Trajectories are restricted
to exist within a fixed positional window of [−10, 10]. For
each scenario, we randomly generate 10 realizations of data
by perturbing each true position measurement by an error
ε ∼ N (0, σ) with σ ∈ {0.1, 0.5, 1.0, 2.0, 3.5, 5.0}, where
σ represents the noise parameter. The problem data is then
generated by adding the detection error to the true position.

xit = αtruei + βtruei t+ ε (37)

Scans Xt are simulated by randomizing the order of xit for
each t. Each unique X generated is referred to as a simulation.
For each such simulation, we run the heuristic with a range of
starting points N ∈ {100 1, 000 10, 000}, and use each of
these solutions as a warmstart for the MIO. The optimization
process is set to terminate after 3T seconds, with solutions
collected at intervals of {1, T, 2T, 3T} seconds.

B. Experiment 2

The second experiment serves as an extension of the first
in order to test the performance of our algorithms under
detection ambiguity. We use the same base data generated from
Experiment 1, but now we simulate missed detections and false
alarms. A detection is removed with probability, γ, and we
consider γ ∈ {0.8, 0.85, 0.9, 0.95}. For each scan, we generate
false alarms by a poisson distribution with parameter, λ, which
locations are then randomly selected uniformly within the
state space. The false alarms are then added to Xt and the
detection order of Xt is randomly shuffled. Once the data
has been generated, we use the same approach as Experiment
1, testing our algorithms with identical values of N and
capturing solutions at the same intervals. Additionally, we
test the sensitivity of our methods across a range of penalties
θ ∈ {TBD} and φ ∈ {TBD}.

VIII. COMPUTATIONAL RESULTS

We begin by discussing the relationship between ρ and σ
and discuss the how this relationship benefits both scenario
generation and measuring complexity. Then we frame the
performance of the basic heuristic before discussing the perfor-
mance of the basic MIO model in both the data association and

trajectory estimation spheres. We follow this with a discussion
of the robust MIO model evaluated under both spheres.

A. Scenario Generation

Figure 1 below shows the relationship between σ and ρ.
The plot is broken down by scenario type between crossing
and parallel trajectories. It can be seen that according to ρ,
the parallel method of scenario generation on the average
creates easier scenarios for the data association problem. This
trend would be expected because it reasons that crossing
scenarios would be more likely to exhibit detections within
close proximity. From this plot we also see how a small range
of six values of σ corresponds to the full range of ρ from 0 to
1, meaning that we can quantify data association performance
across a more continuous range.

Fig. 1: Relationship between σ and ρ summarized by scenario
type.

B. Basic Heuristic Results

We begin our discussion of the heuristic by evaluating the
run times. Table I summarizes the average run times of the
heuristic from Experiment 1 for each value of N , the number
of heuristic starting points, arrange by the number of targets
(P ) and number of scans (T ).

We see that run times increase linearly with the number
of starting points for a fixed number of targets and scans.
Because of this relationship, Table I could be used to easily
compute the run time required for a given application. For a
given scenario of targets and scans and a desired number of
starting points, the required heuristic run time can be projected
using this table. While this may seem to grow quickly for
some scenarios, it is important to note that the power of the
heuristic is that it can be leveraged through parallelization by
running a subset of the total desired number of starting points
on several processors. aThe linear relationship works to our
advantage with parallelization because the total run time for all
starting points can be divided by the number of processors to
be used in parallelization to find the required run time for each
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P T Number of starting points
100 1, 000 10, 000

4 4 0.01 0.10 0.86
4 6 0.02 0.24 2.18
4 8 0.05 0.45 4.28
4 10 0.08 0.76 7.34
6 4 0.01 0.15 1.41
6 6 0.04 0.39 3.67
6 8 0.09 0.81 7.87
6 10 0.17 1.56 15.34
8 4 0.02 0.19 1.83
8 6 0.07 0.57 5.49
8 8 0.14 1.24 12.19
8 10 0.27 2.53 25.15
10 4 0.03 0.25 2.38
10 6 0.09 0.80 7.87
10 8 0.20 1.84 18.48
10 10 0.39 3.73 37.44

TABLE I: Heuristic run times on a single processor (in
seconds).

subset of starting points. For example, consider a scenario of
six targets over a period of six scans. If we desire to run the
heuristic with 50,000 starting points, the total run time required
when run in sequence is projected to be approximately 40
seconds according to table one. However, if we parallelize
this onto 100 processors, then the real run time is reduced
to 0.4 seconds. Thus, the run time of the heuristic can be
reduced to meet efficiency needs subject only to the limitation
of available processors.

We continue our evaluation of the basic heuristic by ana-
lyzing the performance of its solution on the MIO objective.
This gives insight into wether or not the use of RSS as a proxy
for the MIO objective is effective. To evaluate effectiveness
on these terms, we compute the corresponding MIO objective
value of the heuristic solution and normalize it against the
MIO objective value of the ideal solution, which refers to
the solution in which the data association problem is exactly
correct (all detection assignments are exactly known). We refer
to the resulting normalized value as percentage of the ideal
solution’s MIO objective value. Figure 2 plots this normalized
against σ.

We see that increasing the number of starting points im-
proves the quality of the heuristic solution as compared to
the ideal solution’s MIO objective value, especially when the
number of targets is small. However, this effect is diminished
as the number of targets increases. In addition, we see that for
larger numbers of targets, even the largest number of starting
points does not achieve near ideal performance, suggesting the
need for a much larger number of starting points. This is not
considered to be a problem, however, due to the advantages of
parallelization discussed previously and also due to the power
of optimization, which we will see later.

We also see that for larger values of σ the heuristic actually
outperforms the ideal solution’s MIO objective value. Remem-
ber that the ideal solution is simply ideal in the sphere of data
association, while the MIO objective intends to score both
the data association and trajectory estimation simultaneously.
Therefore, we draw the conclusion that achieving perfect data
association for large values of sigma does not necessarily
correspond to the best solution to the trajectory estimation

Fig. 2: Heuristic performance as a percentage of the ideal
solution’s MIO objective value.

problem. In other words, as σ increases it may be necessary
to tradeoff correct data associations in order to improve the
trajectory estimation. We believe the results of the heuristic
could be explained by this effect.

Next, we evaluate the performance of the basic heuristic on
the data association problem as a function of the number of
starting points. To this end, we relationship between accuracy
and N . Figure 3 plots the mean accuracy of each of the three
starting points from Experiment 1 against ρ.

Fig. 3: Accuracy of basic heuristic by number of heuristic
starting points.

First of all, we see that the heuristic finds good solutions
to the data association problem, especially for scenarios with
fewer targets, but performance degrades as the number of
targets increases which is expected. Again it is seen that
increasing the number of starting points results in minor
improvements, and this improvement is greatest for scenarios
with fewer targets. We see a similar effect as ρ increases.
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We conclude that even small values of N produce moderately
good solutions as measured by accuracy.

Overall we conclude that there is not a significant difference
in heuristic performance for the range of N values that we
explored. Therefore for simplification as we move forward in
our analysis, we will restrict our discussions of the heuristic
to N = 1, 000.

C. Basic MIO Results

Next, we evaluate the accuracy of the MIO. Figure 4 plots
the mean accuracy of the MIO, initialized by the N = 1, 000
heuristic solutions, after 1,T, and 2T seconds against ρ. We
have excluded the data for the MIO after 3T seconds for the
sake of clarity as it showed little to no improvement over the
MIO after 2T solution. For comparison, we have included the
heuristic (for N = 1, 000 only) in addition to a randomized
solution, one in which we randomly assigned detections to
targets. Note that in this case, that the ideal solution, one
in which the associations are exactly correct, achieves an
accuracy of 1.0 in all cases so it is not shown explicitly.

Fig. 4: Accuracy of MIO compared against the heuristic and
a randomized solution.

For scenarios with fewer numbers of targets, the MIO
solutions were actually proven to be the optimal solution.
Therefore, for smaller scenarios with few targets, we see that
the heuristic achieves optimal and near optimal solutions. We
also see that the easier the scenario, the more improvement the
MIO has over the heuristic, while in more difficult scenarios
the effect is diminished. Furthermore, it can be seen that in
nearly all scenarios, the MIO achieves its best or near best
solutions after T or fewer seconds, suggesting the usefulness
of the MIO as an online algorithm with a sliding window.

Next, we evaluate the performance of the basic heuristic and
MIO through the lens of trajectory estimation. As discussed
previously, we are interested in comparing δ, our proxy for
ground track error, against σ, our measure of difficulty for
trajectory estimation, in order to analyze performance of in
the sphere of estimation. Figure 5 plots σ against δ for each

of the solution types. In addition to the random solution shown
on the previous plot, we also add a comparison to the ideal
solution, as previously defined.

Fig. 5: Trajectory estimation performance

Remember that lower values of delta correspond to trajec-
tory estimations that are closer to that of the true ground track.
We see that the performance of the heuristic converges to that
of the MIO for scenarios with few targets, as well as for large
values of σ. Additionally, we see that as the number of targets
increases we begin to see stronger improvements by the MIO
over the heuristic. Interestingly, we see that for the scenarios
with the largest number of targets and scans, the MIO after
one second is not much better than the heuristic. While the
MIO after T seconds provides significant improvement over
that of the heuristic and MIO after 1 second, there is little
further improvement in running the MIO for 2T seconds.

Again, we see that in scenarios with only for scans (T = 4)
we see that for larger values of σ the heuristic and/or MIO
sometimes outperforms the ideal. This is likely a result of
limited data and increases uncertainty under high noise. As
the number of scans approaches infinity, the ideal solution, or
perfect data associations, leads to trajectory estimates that are
closer and closer to the true ground track. Put differently. as
more and more data is known, it becomes easier to estimate
the trajectories even in the event of large noise, and so
the trajectory estimates that result from the ideal solution
converges to the true ground track.

D. Robust Heuristic & MIO Results

Results to be included in next draft.

IX. CONCLUSION AND FUTURE WORK

We presented a multi-target tracking approach which jointly
solves the problems of data association and trajectory esti-
mation. We accomplish this without the need of a trajectory
bank nor the a prior computation of trajectory hypothesis. We
demonstrated that the proposed method outperforms for linear
trajectories....
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1) Online algorithm with sliding window 2) More complex
penalties
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